
To be, or not to be: that is the recursive question.
Francisco Fernández de Vega

University of Extremadura, Spain Email:fcofdez@unex.es

Abstract—This paper discusses the opportunity of Funcional
Programming for making students aware about data dependen-
cies and their implications when using parallel and distributed
computing infrastructures.

Although other programming methodologies, such as Object
Oriented Programming (OOP) are usually preferred to be taught
at computer science degrees, the problem is that the sequential
programming approach is inherent to the model, and once stu-
dents have entered the framework, it is not easy for them to learn
modern parallel programming models. Thus, the methodology
learned may act as a straitjacket, preventing students from taking
advantage of the parallel architectures widely available.

The idea presented here relies on choosing Funcional Program-
ming as the methodology to be learned first. Moreover, when any
selected language that embodies the functional model is shown
to students, we propose to forbid loops, similarly as how go-to
sentences are classically forbidden in high level programming
languages, or global variables are forbidden to avoid side effects.
Students must thus resort instead to recursive functions if data
dependencies are present and a sequential order of operations is
required, or to map functions when no dependencies exist. This
way, students naturally develop the skill to automatically write
parallel code within the functional programming context, and
then the map/reduce model can be easily exploited in any context
when parallel and distributed infrastructures are available.

We describe preliminary results obtained when the model has
been succesfully tested with a group of secondary school.

I. INTRODUCTION

Although functional programming has not been very been
popular with computer science degrees for decades [4], a
number of studies and technological trends suggest the impor-
tance of this paradigm and their advantages over more favored
ones among programming educators, such as Object Oriented
Programming (OOP) in the last twenty years or Procedural
Programming (PP) during the 1980s and early 1990s. In any
case, not only the industry has turned its back on functional
programming, also academia usually forgets this programming
paradigm. Unfortunately, the paradigm influences what and
how students learn abstract concepts that are then applied
when they enter the job market.

We are mainly interested here in the way students grasp
main programming principles, particularly those related to
repetitive tasks with data, and dependencies among data.

There are several features that distinguish Functional Pro-
gramming from their counterparts: declarative programming,
function results only depends on the arguments provided, and
recursive functions as the basis for repetitive tasks. This latter
issue is of primary interest, although unfortunately, students
tend to take shelter on more traditional loop based alternatives,
as we will show below.

Functional programming is traditionally seen as an approach
based on the recurrence of repetitive tasks, but unfortunately
recursion has been analyzed as one of the most difficult
programming concepts to be learned [1]. Students generally
prefer direct loops to what they consider convoluted recursive
methods. But maybe one of the reasons is that the teachers of
today’s programming subjects were former students rejecting
recursive approaches in the past, being that one of the reasons,
though not the only one, for the lack of popularity of functional
programming today.

Some has already raised the question of whether the OOP
should be postponed and not taught in introductory courses,
recognizing also that there are some advocates of a functional
language-first approach [2], and that proper teaching of recur-
sion before loops can be positive when a competent teacher is
in charge [3]. But we will focus here in something that to the
best of our knowledge has not been discussed yet in the context
of programming learning approaches, and is the basis for big
data approaches that modern companies apply -the map/reduce
model, whose origins can be traced back to the functional map
and reduce basic functions: while map tries to apply a single
operation to multiple data lacking dependencies, reduce could
be considered a simplified recursive method that sequentially
applies an operation over a series of inter-dependent data.
Using these couple of functions allows programmers to process
independent parallel or sequential series of tasks without the
need of loops. This is exactly the point we address here:
a proper functional programming learning approach should
prohibit the use of loops to promote a more natural approach to
parallel programming, in a manner similar to prohibiting jumps
in each high-level language to promote modularity, readability
and code maintenance. Nevertheless, prohibiting loops is not
enough. An overuse of recursive structures will produce the
same problem for functional programming students as the
abuse of loops in OOP or PP.

Therefore, this paper analyses how an appropriate teaching
of Functional Programming (FP) provides the best framework
for students to understand data dependencies, and develop
a way of thinking that allows them to automatically write
parallel code.

The rest of the paper is organized as follows: Section II
reviews important features of FP regarding repetitive tasks;
section IV presents our proposal, and some preliminary re-
sults using the methodology for teaching a group of young
students are shown in section V. Finally, our conclusions are
summarized in section VI.

978-1-5386-9506-7/19/$31.00 ©2019 IEEE 9–11 April, 2019 – American University in Dubai, Dubai, UAE
2019 IEEE Global Engineering Education Conference (EDUCON)

Page 1321

II. THE RECURSIVE NATURE OF FUNCTIONAL
PROGRAMMING

As described above, there are a number of features that
characterize the functional programming methodology:

• High order functions: Functions that take other functions
as arguments.

• Pure functions: No side effects may happen.
• Recursion: Recursive functions may invoke themselves

and produce an iterative process.
• Macros: Data can be transformed into code and executed

on runtime
Some of these features maybe shared with other program-

ming methodologies, but the possibilities they provide all
together in a single model are unique.

Although all of them important, we will focus here in
high order functions and recursion, that play an important
role on the way we may help students to understand parallel
programming.

Functional programming has its origins in lambda calculus,
first developed by Alonzo Church [6], a universal model
of computation which is based in the successive application
of functions: functions that apply other functions to results
provided by other functions, and so on and so for. As we
will show below, this feature, when properly used, allows to
describe and implement parallel operations in the functional
paradigm. On the other hand, recursive functions also allow
to describe an operation that is performed multiple times. Yet,
important differences among those features can be exploited
for an appropriate learning of data dependences an the way
parallel processes are correctly programmed.

In more favored programming models, loops are the main
tool employed when a repetitive task must be solved. Thus,
when OOP is nowadays taught to students, loops are the main
mechanism employed to assure that a given step is performed
a number of times. Although recursive functions could also
be applied in this context, students are only confronted with
them when loops are mastered. Moreover, recursion is shown
to students when it is the natural approach to solve a problem.
For instance, when data structures are studied, and trees are
used to solve a given problem that needs traversing it, the
recursive approach is the easiest way. Although other standard
loop based solutions may be built -using a while loop for
instance- , the need for additional data structures, such as a
stack to control returning points when going deep into the tree
structure, as well as a careful control of information required
to properly perform the traversing process, pushes students to
employ recursion, that is otherwise rejected.

We think this loop-based teaching programming models
offered to students, are the reason why they tend to avoid
recursion as frequently as possible: when a standard loop can
be used, they will never resort to a recursive process [7].
Another typical situations is when an indexed data structure
must be checked, such as an array: students will typically use
a for loop with an index to visit every array position. Instead,
when a stop criteria determines whether a repetitive task must

continue or not, a standard while process will control when to
stop. This is corroborated with previous studies that confirm
recursion as the most difficult concept to be learned for novice
programmers [5].

A. The situation at Spanish Universities (and beyond).

Although we provide here data extracted from the Univer-
sity of Extremadura, the situation is similar in the Spanish
Universities, where OOP methodologies dominates the land-
scape.

In our University, a programming contest was recently
launched, which allows everybody interested to participate:
The Ada Byron Challenge. Forty participants registered,
mainly undergraduate students, and also some of them at high-
school. After checking all of the solutions submitted to the
set of problems included in the challenge, not a single one
employed recursive approaches (nor functional programming
languages).

As a second example, Operating Systems (mandatory sub-
ject offered the third year in the Computer Science degree) also
provide a set of problems related to the subject that students
must solve. Among the thirty students enrolled, only one
provided a recursive solution to one of the problems proposed,
even when all of them had previously learned the concept.

Both cases allow us to confirm a diagnostic described in pre-
vious sections: (i) for students learning programming in high
school, recursive functions are mainly unknown. The reason
may be due to the tools employed to learn -typically scratch
[9]- and that their teachers do not focus on this advanced topic;
(ii) for undergraduate students, even when they are exposed
to recursive functions -in programming subjects offered the
second year, they tend to refuse the technique and instead
resort to loops for solving problems, given it was the first and
easiest tool they learnt.

On the other hand, if we focus on these undergraduate stu-
dents, even when they study parallel programming -a manda-
tory subject in Computer Science- they typically do not apply
it when developing their final degree project. In our University,
not a single project using parallel programming techniques
has been presented in the last 5 years. This demonstrates
that learning and applying parallel programming techniques is
hard for them, and prefer to use a more traditional sequential
programming model.

We believe that loops are problem that keep students from
properly learning and understanding parallel programming
models. We try to show below why this is the main problem,
and also describe the proposal that we are beginning to apply
with secondary school students. Preliminary results presented
allow us to be confident with the proposal.

III. TO BE OR NOT TO BE

As described above, once the student learns the sequential
programming method and understands the structure of the
loop, she will systematically apply it to any iterative process
faced: when two options can be applied, the easiest approach
will be the preferred one (loops in this case). It will happen

978-1-5386-9506-7/19/$31.00 ©2019 IEEE 9–11 April, 2019 – American University in Dubai, Dubai, UAE
2019 IEEE Global Engineering Education Conference (EDUCON)

Page 1322

regardless of the programming methodology used. Actually,
when students learn their first functional language, once other
OOP or procedural languages are known, one of their main
questions are related to how to write loop structures in the new
language. As we will see below, functional programming pro-
vides useful tools to avoid standard loops; moreover, these new
tools help students to conform their abstraction programming
structures when dealing with repetitive tasks, fundamental for
future learning of parallel programming.

Yet, in the context of the functional programming, the
solution is not to simply ban loops. This simplistic approach
would produce the same problem when programmers are
taught to use only the recursive approach, as we will describe
below. If only one model is known, there is no option available.

A. To be or not to be, that is the question

Something similar happens in proper use languages for non-
native speakers. Let’s take an example, comparing loops (the
preferred students choice) with the english to be verb for an
English-speaking native who learns Spanish.

While two different ser and estar verbs are used in Spanish
as equivalent to the to be of English, native Spanish speakers
never choose the wrong verb, while it is quite tricky for native
English speakers to choose the right one. Thus, the famous
Skesperian phrase ”to be or not to be, that is the question”
must be translated, choosing appropriately between the two
available meanings for the verb, as ”ser o no ser, esa es la
cuestión” and never as ”estar o no estar, esa es la cuestión”
whose meaning is completely different. But for novice spanish
learners the choice is not so ease, and english speakers usually
choose ser regardless of the real meaning of to be in a given
sentence.

B. Map or reduce, that is the recursive question

Similarly, loopers find it difficult to understand an im-
portant dimension of the data that is processed repeatedly:
dependencies, and how it affects the way a given problem
must be correctly solved when parallel models are available.
Students have developed a tendency to always choose loop
structures without considering proper relationships of data to
be processed, and this makes it difficult to understand how a
parallel version of the algorithm must be correctly written.

Consider for instance an array of integers, and two possible
operation to be performed over it:

• a[i] = a[i] + 1; Add one to every position of the array
• a[i] = a [i] + a[i-1]; Accumulate sequentially positions of

the array
As we may notice, for the first problem every array position

value can be computed independently which means that all of
the values could be computed in simultaneously regardless of
the order of operations. On the other hand, in the second case,
the value of every position is updated by adding the value of
the previous one, but a specific order is required to obtain
the correct results. Therefore, while the first problem can be
easily partitioned and solved in parallel, that solution cannot
be applied to the second case.

Yet, despite differences, both problemas can be easily solved
using the same loop based approach, and students will typi-
cally produce solutions such as the following ones:

for (i=0;i<n;i++)
a[i]++;

for (i=1;i<n;i++)
a[i]=a[i]+a[i-1];

Both solutions are valid when sequential models are em-
ployed. But things may be not so easy when a parallel
programming approach is required and multiple processes
cooperate when computing the solution.

Nowadays, the availability of multiple processors on single
machines allows to perform several operations simultaneously.
If that is the case, we should make use of those processors as
frequently as possible, and we should teach students how to
make use of them. Unfortunately the learning of OOP based
sequential programming methodologies lead students to rely
on loops, regardless of the nature of data to be processed.

Although both solutions seem similar in the previous ex-
ample, and from the point of view of novice programers
do the same, visiting each of the positions of the array to
do something, a big difference is hidden, as stated before.
While the sequential approach works fine (loops do the work
sequentially), when students must face a parallel approach
to the problem, given the way they think -they had never
consider that the order of operations may affect results- they
will develop parallel solutions by simply translating every loop
cycle to a different process doing a single task . Thus, n
different processes will be launched each of them doing a
single operation on a position of the shared array:

a[i]++; // first problem

a[i]=a[i]+a[i-1]; // second problem

Unfortunately, the second problem does not work because
relative speed of processes will alter desired results.

We could analyze previous simple problems from the point
of view or Flynn’s taxonomy: they could be easily seen as a
materialization of the SIMD class, single instruction (addition)
multiple data (every array position). In the first problem, if
a parallel approach is applied, so that n processes are in
charge of computing each of the i positions of the array, and
considering the array as a shared array among the process, no
problem will arise; but in the second one, the result in every
position will depend on the relative speed of the processes.
As we know, relative speed of precesses should never affect
results of parallel computations:

• a[i] = a[i] + 1; Computing position i does not affect to
any other position of the array: no data dependences exist
in the problem

978-1-5386-9506-7/19/$31.00 ©2019 IEEE 9–11 April, 2019 – American University in Dubai, Dubai, UAE
2019 IEEE Global Engineering Education Conference (EDUCON)

Page 1323

• a[i] = a[i] + a[i-1]; Position i final value maybe affected
on how and when position i − 1 is computed: data
dependencies exist among data.

Summarizing, we see that when sequential programming
methods are taught: (i) students prefer loops; (ii) loops hide
data dependencies; (iii) programming structures make it diffi-
cult to learn parallel programming and write correct parallel
programs.

But we have opportunities for making students aware of data
dependencies if we resort to map operations in the functional
model. Moreover, given the simplicity of map based solutions
when the operation is understand, students will resort to map
whenever possible, and will only go to recursive approaches
when the map operation does not work.

IV. METHODOLOGY: FORBIDDING LOOPS

The proposal we describe here relies on loop prohibition
in programming languages. This proposal can be achieved in
any programming language where both recursion and map like
functions -in the functional programming model sense, i.e.
high order functions- are available. If the latter is not available,
this methodology can not be applied. For simplicity’s sake,
from now on we will refer to functional programming as our
framework, using common lisp when providing code samples.

If we try to develop a functional based approach for the
first of the two problems posed, and given that loops are not
available any more, it can be simply solved as shown below
(lisp based solution, being a the list with the vector’s values):

(mapcar ’1+ a)

Similarly, and given the idea is to forbid loops in functional
programming, the alternative is to develop a recursive solution
to this problem:

(defun solution (a)
(if (null a)

a
(cons (1+ (car a))

(solution (cdr a)))))

and the equivalent reduce-based solution:

(reduce (lambda (x y)
(append x
(list (1+ y))))

(cons (list (car a)) (cdr a)))

Reduce based solutions are equivalent to recursion based
ones, but should only be taught to students when they master
both recursive processes and anonymous (lambda) functions.

Thus, two possibilities are available for students, the map-
based solution and the recursive one. Yet, considering a student
that master both the recursive methods and also the map
approach, it is easy to see that he will always choose the map
version of the problem. Moreover, the novice student, who
typically refuse recursive processes, will also take shelter on
the map solution. This will happen even when the recursive
approach can be simplified using the reduce function:

But if we focus on the second problem, when the student
tries to write a map-based solution, it will simply not work:

(mapcar ’+ (cons ’0 a) (append a ’(0)))

This solution (being a the list of numbers) do not provide
the expected result: Given the input 1, 2, 3 it will return 1, 3, 5
instead of 1, 3, 6 expected. Even if the instructor does not
explain the special features of this problem, and simply show
the input and output, the student will quickly notice that the
map approach does not work and will look for the alternative
recursive procedure. Thus the student will easily understand
that dependencies among data keep map-based solutions from
properly working, and will necessarily produce a recursive
solution such as:

(defun solution (a)
(if (null (cdr a))

a
(cons (car a)

(solution
(cons (+ (car a)

(cadr a))
(cddr a))))))

or the equivalent reduced-based solution:

(reduce (lambda (x y)
(append x

(list (+ (car (last x)) y))))
(cons (list (car a)) (cdr a)))

Therefore, once students discover differences between map
and reduce (recursive processes) way of working, and their
implications on data dependencies, they will simply write
programs that are naturally suited to parallel environments:
mapping operations allows to apply simultaneously a single
function to a series of data in a SIMD model (Single Instruc-
tions Multiple Data). Thus, when the functional paradigm is
used as described above (loops forbidden) and students are
shown both the recursive model and also the possibility of
using mapping operations, they will always try to see if a map
operation may be applied, and only when that is not possible
will apply a recursive solution, given their natural tendency
to avoid recursive processes. Every map operation could be
automatically transformed to launching as many processes in
parallel as data elements have to be processed.

The crucial aspect of this programming methodology is
that students are automatically developing a parallel thinking
approach to programming, and when they master the model,
it will allow them to more easily understand parallel program-
ming methodologies in the future.

Moreover, we think that this way of thinking can be taught
to young students from the very beginning, and this will allow
them to easily recognize when a map-based approach -parallel
solution- can be applied.

In the following section we describe the experience we
get when applying the methodology to a group of young

978-1-5386-9506-7/19/$31.00 ©2019 IEEE 9–11 April, 2019 – American University in Dubai, Dubai, UAE
2019 IEEE Global Engineering Education Conference (EDUCON)

Page 1324

secondary school students, that shows the feasibility of the
learning approach.

V. RESULTS

We decided to teach functional programming as the first
methodology to a group of students in secondary school
enrolled in a STEM program in our region. This program,
Municipal Schools of Young Scientists (MSYS)[10] is devel-
oped on Extremadura, a spanish region, since 2014, and today
provide after-school workshops to more than 400 students
every week in 16 different towns.

A small group of 6 students whose main interest was
programming were selected to test the programming model
described above. This group was thus exposed to the method-
ology described, that includes recursive methods, map func-
tions, and loops prohibition. The idea was to test if this new
teaching approach allows student to grasp data dependencies
easily. Common Lisp was the selected language, being CLISP
[12] the interpreter employed, although the language itself is
not the main issue here.

After 40 hours of teaching and practicing, a couple of
problems were proposed to students, in order to see if they
had properly understood two main ideas: (i) how recursive
functions are programmed to solve a task; (ii) when data
dependencies and/or the order of steps to solve a problem
require sequential recursive methods, or instead parallel map
based procedures.

The problems were properly selected to check the above
mentioned ideas, and are summarized as follows:

1) Parallel Problem: Computing a series of cylinder vol-
umes: The problem consists of computing the volumes of a
series of cylinders, when we provide for each of them a couple
of parameters: radius and height. The series of radius and
heights are provided in two different lists (r-list, list of radius
and h-list, list of heights for every cylinder). We do not discuss
here the convenience of providing data input with a different
structure, which is not the aim of the problem proposed to
students.

The problem is parallel by definition, given that each of the
volumes can be computed without any dependences with the
remaining ones.

2) Sequential Problem: The Drunkard walk: The problem
to be solved is the well known drunkard’s walk problem (a
kind of random walk related problem [11]): A drunk man is
wandering far too close to both walls in a narrow street. Every
random steps he gives will be a step closer to one of the two
walls. If initially he is 5 steps far from each of the walls, the
problem tries to figure out if after a number of steps he will
reach any of the wall.

Given that random functions were not studied by students
yet, we provided them with a list of random steps to be test,
such as:

(1 0 0 1 0 1 1 1 0 0 1)

1: Take a step to the right.
0: Take a step to the left.

As a sample of results, we show below one of the solution
provided by a thirteen year old student for the first problem
proposed.

(defun volume (r-list h-list)
(mapcar ’area r-list h-list))

(defun area (r)
(* 3.14159 r r))

Although a recursive solution could be also developed,
students correctly selected the map-based approach, given that
no data-dependencies are present in his problem.

After checking the second problem, students first understood
that map-based approaches do not work in this case, due to the
need to consider the order of steps, and not just the number of
them in each direction. Secondly, the solution they developed
perfectly solved the problem. We show one of the solutions
programmed by the same student as before:

(defun drunkards-walk (steps-list)
(check-the-random-walk
(steps-list 0))) ;begin at position ’0

(defun check-the-random-walk (steps-list n)
(if (null steps-list)

’congratulations
(if (or (= n 5)(= n -5))

’bad-luck
(if (= 0 (car steps-list))

(check-the-random-walk
(cdr steps-list) (-1 n))

(check-the-random-walk
(cdr steps-list) (+1 n))))))

The first thing we confirmed was that when both possi-
bilities are useful for solving a problem, the map-based or
recursive one approaches, students always go to the map-
based solution, as anticipated. The reason is that it is much
simpler for them to solve a problem with map functions when
compared to recursive approaches. And this is really our goal:
we always prefer a map-based solution if possible, given that
map-based programs are inherently parallel, and would make
use of available hardware resources when modern compiler,
tools and hardware is used. Although at this stage we do not
emphasize the need of specific technology to run the program
in parallel, we reach our goal: the code is written in the
parallel way. Not only that, students are naturally developing
that model in their brains, and it could be later applied to any
programming language or hardware technology that allows the
functional approach.

Secondly, we saw that recursive approaches where perfectly
grasp by students, and properly applied when required.

978-1-5386-9506-7/19/$31.00 ©2019 IEEE 9–11 April, 2019 – American University in Dubai, Dubai, UAE
2019 IEEE Global Engineering Education Conference (EDUCON)

Page 1325

Considering both problems, we see that young students
understand recursive process, and apply them correctly when
the map-based approach does not work. On the other hand,
if a map based solution works, then they will build the
program using it instead of recursive methods, as shown
above. Therefore programs produced under this methodology
are parallel by nature.

Although these are young students that have not studied yet
parallel and distributed tools and hardware resources -such
as multi-core, many-cores, map/reduce methodologies...- the
way they have acquired programming skills will allow them to
more easily write code that naturally fits these parallel models
in the future.

VI. CONCLUSIONS

This paper proposes functional programming as the main
programming methodology for novel students with the sup-
pression of loops as a basic principle that will allow students
to develop a natural parallel programming way of thinking
from the very beginning. The reason for this prohibition
is clear: the experience with traditional OOP or structured
programming where loops and recursive process are taught
to students shows that students always build programs using
loops that keep them from correctly understanding the nature
of data to be processed, thus producing sequential code. The
evidences retrieved from both a programming competition
and a compulsory subject in computer science degree at the
University of Extremadura corroborate what has already been
raised by previous studies.

On the other hand, when loops are not available, and given
that both recursive processes and higher order functions are
part of the toolset, student will necessarily learn two ways
to tackling repetitive tasks: the Map based approach, when
multiple independent data must be processed using a single
function (in a SIMD model); or the recursive approach (or
reduce equivalent version) when interdependent data must
be processed sequentially. Thus, the code produced using
this model is parallel per se, and could be easily run in a
parallel infrastructure using modern computing infrastructures
and tools such as hadoop map/reduce.

We show in this work results obtained with a group of
teenagers when the methodology is applied. Results allows us
to have confidence in the model developed: students provide
correct solutions using both map and recursive processes
for a couple of problems posed. We plan to extend this
programming learning model to a wider set of students in the
coming years.

Although loop prohibition could be applied to any pro-
gramming language and methodology that allows map-based
operations, we suggest to better use functional programming
as the main framework when applying the model we propose,
given the features that distinguishes it from alternatives.

ACKNOWLEDGMENT

We would also like to thank Spanish Ministry of Economy
and Competitivity project TIN2017-85727-C4-4-P Deep-Bio-
Uex, and TIN2014-56494-C4-4-P Ephemec-Uex; projects and

G15068 IB16035 of the Regional Government of Extremadura,
Department of Commerce and Economy, cofunded by the Eu-
ropean Regional Development Fund, ”A way to build Europe”.

REFERENCES

[1] Lahtinen, E., Ala-Mutka, K., & Jrvinen, H. M. (2005, June). A study of
the difficulties of novice programmers. InAcm Sigcse Bulletin(Vol. 37,
No. 3, pp. 14-18). ACM.

[2] Bruce, K. B. (2005). Controversy on how to teach CS 1: a discussion
on the SIGCSE-members mailing list.ACM SIGCSE Bulletin,37(2), 111-
117.

[3] Turbak, F., Royden, C., Stephan, J., & Herbst, J. (1999). Teaching recur-
sion before loops in CS1.Journal of Computing in Small Colleges,14(4),
86-101.

[4] Wadler, P. (1998). Why no one uses functional languages. ACM Sigplan
Notices, 33(8), 23-27.

[5] Lahtinen, E., Ala-Mutka, K., & Jrvinen, H. M. (2005, June). A study of
the difficulties of novice programmers. In Acm Sigcse Bulletin (Vol. 37,
No. 3, pp. 14-18). ACM.

[6] Church, A. (1941). The calculi of lambda-conversion (No. 6). Princeton
University Press.

[7] Kahney, H. (1983, December). What do novice programmers know about
recursion. In Proceedings of the SIGCHI conference on Human Factors
in Computing Systems (pp. 235-239). ACM.

[8] McKenney, P. E., Michael, M. M., Gupta, M., Howard, P. W., Triplett,
J., & Walpole, J. (2009). Is parallel programming hard, and if so, why?.

[9] KALELIOGLU, F., & Glbahar, Y. (2014). The Effects of Teaching
Programming via Scratch on Problem Solving Skills: A Discussion from
Learners’ Perspective. Informatics in Education, 13(1).

[10] Fernández de Vega, F., Chávez, F., Garcı́a, M.C. (2018). On the impact
of STEM sustained actions on the future of young students. IEEE FIE
2018.

[11] Weiss, G. H. (1983). Random Walks and Their Applications: Widely
used as mathematical models, random walks play an important role in
several areas of physics, chemistry, and biology. American Scientist,
71(1), 65-71.

[12] Drasch, F. J. (1987). The clisp Programming Environment. Drasch
Computer Software.

978-1-5386-9506-7/19/$31.00 ©2019 IEEE 9–11 April, 2019 – American University in Dubai, Dubai, UAE
2019 IEEE Global Engineering Education Conference (EDUCON)

Page 1326

	Contribution_1440_a

